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ABSTRACT. The rank transformation approach to
analysis of variance as a solution to the
Behrens-Fisher problem is examined. Using
simulation methodology four parameters were
manipulated for the two group design: (1)
ratio of population variances; (2) distri-
bution form; (3) sample size and (4) popula-
tion mean difference. The results indicated
that while the rank transform approach was

less sensitive to variance inequality than the
parametric ANOVA F-ratio, unacceptably high
Type I error rates were obtained when cell
frequencies and group variances were inversely
related. With equal cell frequencies and/or
when cell frequencies were directly related to
group variances, appropriate Type I error
rates were obtained. Under these conditions
however, the Brown-Forsythe procedure for
comparing, group means provided greater power
except when the sampled distribution was
leptokurtic.

Both empirical and analytic studies have repeatedly
shown that paramet:ic analysis procedures for
comparing group means are extremely sensitive to
population voriance inequality when sample sizes are

Zr.

.4')

markedly unequal. Wben sample size and group variance
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are positively correlated, the nominal significance
level is underestimated while with a negative
relationship between sample size and group variant,
the nominal significance level is overestimated
(Glass, Peckham and Sanders, 1972). Even with equal
sample sizes, Ramsey (1980) has shown that the actual
probability of a Type I error for the t-test may
either over or underestimate the nominal significance
level. Developing alternhtive data analysis
strategies when population variances differ, also
known as the Behrens-Fisher problem, has therefore
been an area of considerable interest, and several
solutions to the problem have been suggested. The
procedure offer'd by Welch (1947, 1951), in
particular, has gained considerable attention.
Welch's solution modifies the ANOVA F-ratio by
weighting the sample means by the ratio of the group
frequency to the group variance. In addition the
degrees of freedom error are adjusted so that the
computed statistic approximates the F distribution.
Wang (1971) has shown that this approximation is
satisfactory for most situations. James (1951)
suggested a similar weighting procedure but used the
chi-square distribution as the reference distribution.
Recently Brown and Forsythe (1974a) have suggested a

slightly different approach to the Behrens-Fisher
problem. Their statistic takes the ratio of the sums
of squares between groups to a weighted sum of group
variances. The test statistic has an approximated F
distribution. For the two group case, the Welch and
the Brown-Forsythe procedures are identical
(Brown-Forsythe, 1974a), but differ when multiple
groups are compared. Both procedures have been
generalized for factorial designs (Brown and Forsythe,
1974b; Johansen,.1980; Algina and Olejnik..1984).
A number of investigations have studied both of

these strategies and compared them with respect to
their Type I error rates and statistical power. The
results of these studies have shown that both
approaches are insensitive to variance inequality when
the sampled distributions were normal (Kohr and Games,
1974; Brown and Forsythe, 1974a; Levy, 1978; Dijkstra.
and Werter, 1981; Lee and Fung, 1983). Under
non-normal parent distributions the Brown-Forsythe
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statistic was shown to provide appropriate Type I
error rates (Clinch and Keselman, 1982; Lee and Fung,
1983). The results with Welch's approach however have
been mixed and inconsistent. There is some evidence
to indicate that the approach is liberal for skewed
distributions when the number of levels of the
grouping factor is four or more (Clinch and Keselman,
1982; Levy, 1978). Levy on the other hand found
appropriate Type I error rates when there were three
levels of the independent variable and the sampled
population had a chi-square distribution. When data
were sampled from heavy-tailed distributions, some
results have indicated that Welch's procedure provides
a conservative test of group means (Yuen, 1974; Lee
and Fung, 1983). Other evidence however indicates
appropriate Type I error rates (Clinch and Keselman,
1982). Differences in these conclusions may be a
function of the degree to which the sampled
populations departed from normality. Fthally for
light-tailed distributions, the Welch procedure has
been shown to provide a liberal test of means (Levy,
1978), but other results indicate that appropriate
Type I error rates are possible (Yuen, 1974).
When the procedures were compared in terms of tneir

statistical power, the results have been mixed but
generally consistent. Both procedures provide
comparable power when the population distributions are
normal and the variances are equal. Under this
condition both procedures are only slightly less
powerful than the ANOVA F-ratio (Brown and Forsythe,
1974a; Dijkstra and Werter, 1981; Clinch and Keselman,
1982; Lee and Fung, 1983). With unequal variances and
a normal parent distribution, the Brown-Forsythe
approach provided greater power when the extreme mean
had lower variance, while the Welch procedure was more
sensitive if the extreme mean had the large variance
(Brawn and Forsythe, 1974a; Dijkstra and Werter, 1981;
Lee and Fung, 1983). Clinch and Keselman however
found very little difference in statistical power
between the procedures for this condition. The
statistical power for all of the procedures studied
however was relatively low, and that may explain the
inconsistency in the results reported by Clinch and
eselman. Finally for heavy-tailed distributions the
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Welch procedure provided a slight power advantage
- (Clinch and Keselman, 1982; Lee and Fung, 1983).

Recently, Dauphin (1983) considered a different
approach to the Behrens-Fisher problem. She suggested
transforming the original data by using rarks before
group means are compared. After ranking the data from
highest io lowest across all comparison groups, the
parametric analysis of variance F-ratio is computed.
This strategy of transforming data using ranks before
computing parametric analysd's has been suggested by
Conover and Iman (1981) as a linking procedure between
parametric and nonparametric analysis strategies.
They have suggested that the ranking approach can be
used in a variety of research contexts and
considerable research has keen conducted using this
approach generally with positive results. Nath and
Duran (1981a, 1981b) studied the procedure when two
group means are to be compared, Conover and Iman
(1982) applied the approach to analysis of covariance,
Iman and Conover (1979) used the rank transformation
in a regression problem, and Iman (1974) studied the
approach for factorial designs when an interaction was
present. Although the theoretical rationale for the
procedure is not fully developed, progress in that
direction has been reported by Iman, Bora and Conover
(1984).

The use of the rank transformation has been
motivated primarily as an alternative analysis
strategy to parametric statistics when sampled
distributions were non-normal. In this context the
rank transformation has often provided a more
sensitive test of the location parameter than the
parametric alternative. The rationale of applying the
rank transformation as a solution to the
Behrens-Fisher problem was based on previous findings
that nonparametric strategies, while affected by
varianta inequality, are less sensitive than the
parametric alternatives (Wetherill, 1960). Glazer
(1963), for example, empirically demonstrated
Wetherill's asymptotic results showing that the
WilcoxOn-Mann-Whitney probability of a Type I error
was less affected than Student's t-test for independ-
ent sample means when the population variances
differed. Since the rank transform is monotonically
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related to the Wilcoxon test, Dauphin expected similar
conclusions. Her results confirmed her expectation
showing that the actual Type I error rate for the rank
transform did not deviate greatly from the nominal
significance level when the sampled population was
normal.

Since the rank transformation has gained
considerable interest and Dauphin's results indicate
that the approach may have some merit in some
situations, it was decided to examine this proposed
solution to the Behrens-Fisher problem a little
closer. Specifically the purpose of the study was to
analyze the empirical Type I error rates of the rank
transform ANOVA with parametric analysis of variance
and Brown-Forsythe's procedure when population
variances differed, and the distributions were normal
or non-normal. In addition, for those situations
where appropriate Type I error rates were observed,
the statistical power estimates for small, medium and
large differences in group means were compared.

Computer Simulation

In order to calculate empirical Type I error rates
and statistical power estimates for .each of the
competing analysis strategies under a variety cf
conditions, four factors were manipulated: .1) sample
size; 2) distribution form; 3) population mean
difference and 4) population variance inequality.
Although all three of the procedures can be used for
comparing group means in multiple group designs,
including factorial designs, the present investigation
was limited to comparisons between two groups.

Sample Size. Samples of (10,15), (15,10), (20,20),
(17,23), and (23,17) were included in the
investigation. The sample sizes consideree here were
thought to be moderate and representative of those
often found in research studies in the social
sciences. Small departures from equal n's were chosen
to represent common attrition rates in social
research.

Distribution Form. A normal and four non-normal
parent distributions were considered. The non-normal
distributions included a light-tailed, platykurttc
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distribution, a symmetric, leptokurtic (heavytailed)
distribution, a moderately skewed distribution, and a
distribution which was both skewed and leptokurtic.
The population cnaracteristics of these distributions
are discussed in the data generatj.on section.

Population Mean Difference. To study the Type I
error rates of the three procedures, data were
generated from populations which had a common mean.
Power estimaees were obtained by comparing the
proportion of hypotheses rejected when data were
sampled from populations which differed by .2, .5, or
.8 pooled standard deviation units. These differences
in the location parameters have been suggested by
Cohen (1977) as representing small, medium, and large
effects respectively.

Population Variances- The present Etudy considered
populations which had common variances as well as six
levels of variance inequality. Specifically data were
generated from populations with the f011owing variance
pairs: (1,1), (1,1.5), (1,2.0), (1,2.5), (1,3.0),
(1,3.5), and (1,4.0). The choice of these variance
differences was based on two considerations. First, it
was believed that'the conditions considered reflected
common situations encountered by applied researchers.
Second, it was believed that with the unequal
sample size combinations studied, the variance
differences would affect the Type I error rate of the
parametric ANOVA Fratfo.

Data Generation. Data for the study were generated'
using the SAS computing package. Scores on the
dependent measure were created based on the linear
model function Yij = i .. +a .j +a j cij, where Yij is
the ith observation in the jth group. The grand mean
p .. was set equal to 10. The effect size parameter
for the jth group, a i, was varied from 0, .2, .5, or
.8 pooled standard deviation units to study the effect
population mean difference. In all cases the shift
parameter was added to the second group so that
111 < P 2 The random error component c ij was

generated using the SAS NORMAL function to simulate
scores, Xij, from a standard normal distribution. For
a normally distributed error component, c ij was set
equal to Xij. For a nonnormally distributed
component, Xij was transformed using a power function
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developed by Fleishman (1978): e
ij

[(dXij+c)Xij+b]Xij-s-a. The constants a, b, c and d
were chosen to transform the standard normal variable
to a variable with known skewness and kurtosis and
null mean and unit variance. Four nonnormal
distributions we::e considered in the study.
Descriptive statistics and frequency distributions at
half standard deviation intervals are included in
Table 1. Values reported in the table are based on
20,000 random variables generated for each

Th'e variance of the observations in
group one was kept constant at 1 for all conditions
studied while the variance of the second group was
increased from 1 to 4 in increments of .5 units by
multiplying the random error component by the desired
standard deviation.

Computed Test Statistics. In each sample generated,
the group means were compared using the parametric
analysis of variance Fratio, the BrownForsythe
(1974a) test statistic, and the rank transform
analysis of variance Fratio.

The parametric analysis of variance Fratio is
computed as the ratio of the mean square between group
means to the pooled within group variance:

E n (F. ....Y..)2/(J-1)

E (n 1)s2/(NJ)

where nj is the number of observations in the jth
group; N is thc total number of observations in the
sample; J is the number of groups in the study; Y.j is
the sample mean for the jth group; Y.. is the grand
mean; S5 is the variance of the jth group. The
critical test statistic is obtained from the F
distribution with J-1 and NJ degrees of freedom.
The rank transform ANOVA Fratio is computed using

the same ...ormula as parametric ANOVA with the
dependent variable obtained by replacing the original
observations with the rank of the observation. The
observations are ranked by assigning a 1 to the lowest
observation and N to the highest observation in the
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Table 1

Frequency Distributions and Descriptive Statistics

Distributions

Interval

.'

Normal Platykurtic Skewed Leptokurtic
Skewed/

Leptokurtic

- w ,-3.0

-3.0,-2.5
-2.5,-2.0

17

85

232

151

119
301

-2.0,-1.5 889 1552 601
-1.5,-1.0 1885 2297 3605 1257
-1.0,-0.5 2470 2917 3976 2816 8555-0.5, 0.0 3826 3235 3591 4745 42190.0, 0.5 3817 3177 2053 4753 25770.5, 1.0 3038 2805 2345 2748 17771.0, 1.5 1849 2411 1552 . 1343 11421.5, 2.0 855 1606 1039 586 6712.0, 2.5 332 520 .263 440
2.5, 3.0 86 230 178 268 .3.0, w 19 89 139 351

Mean -.0015 .0049 .0009 .0004 - .0063Variance .9836 1.0109 1.0631 1.0292 .9774Skewness .0004 - .0005 .7266 - .1297 1.6820
Kurtosis -.0938 -1.0131 - .0846 3.5547 3.1517

NI
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total sample across all groups. If ties are present
the average rank is assigned to all tied observations.
The F-ratio is computed as:

Enj(

F
R

j

E(n -1)S2 /N-J
j R

where is rhe mean rank of group j; IL. is the
grand mean rank N4-1/2 ; S2Rj is the variance on the
ranks for the jth group. The critical test statistic
for the rank transform F-ratio is the same as that for
the parametric ANOVA.
The Brown-Forsythe statistic is obtained as the

ratio of the sum of squares between groups and a
weighted sum of within group variance:

F
BF

I it

Enii
E(1- 4S2

N jj
where the terms are defined as stated above. The
Brown-Forsythe F statistic has an F distribution with
degrees of freedom J-1 and f where 1/f is equal to

[c2/(n -1)] and c =(1-
N
121)S2/ d(1- 1-1.+1-)S2 ]

j j N j

For each condition, 1000 replications of the three
statistics were computed, and the frequency at which
each procedure rejected the null hypothesis of equal
population means at the .05 level was recorded. In
evaluating the robustness of each procedure, it was
decided that observed proportions of Type I errors two
standard errors above or below the nominal
significance level would be judged as unacceptable.
Based on 1000 replications, observed Type I error
rates outside the interval (.036, .064) were
considered nonrobust.
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Results

The results of the study are reported in two
sections. In the first section the empirical Type I
error rates for the BrownForsythe, the parametric
ANOVA, and the rank tranaform ANOVA are presented for
increasing variance inequality with equal and unequal
sample size combinations. The second section presents
the proportions of hypotheses rejected when population
differed by .2, .5, or .8 pooled standard deviation
units representing small, medium, and large effect
sizes. The power results are reported only for those
conditicns where appropriate Type I error rates were
obtained.

Type I Error Rates

As a preliminary test of the computer program and
the data generation procedure, data for three sample
size combinations were generated from populations
identical in their form, scale, and location. The
sample means for these samples were compared using the
three analysis procedures under consideration, and the
proportion of hypotheses rejected at a nominal
significance level of .05 were recorded. Table 2
reports the results of these analyses for the five
distribution forms studied. None of the observed
proportions exceeded two standard errors above or
below the expected five percent level. These results
therefore support the adequacy of the data generation
and analysis procedures used in the study.
The observed Type I error rates, as the difference

in group variances increased, are reported in Table 3
for the five distribution forms with equal and unequal
sample size combinations. For the normal distribution
the results reported here are consistent with those
presented by Dauphin (1983). The Type I error rate
for the rank transform AMATA was affected to a lesser
degree than the parametric ANOVA Fratio. However, for
situations where the smaller samples had greater
variance, the proportion of Type I errors were more
than two standard errors above the nominal
significance level and therefore judged as being
unacceptably high. When large samples had greater

70
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Type I Error Rates for the Brown-Forsythe (BF),
Parametric ANOVA (F), and the Rank Transform (RF)
ANOVA

Sanple Size

Distribution

15/10

RF BF

20/20

RF BF

23/17

PFBF F F F

Norma1 .044 .046 .050 444 .044 .043 .060 .064 .059

Platykurtic .057 .058 .058 .056 .056 .052 .054 .051 .048

Skewed .050 .043 .050 .r)52 .052 .055 .055 .057 .054

Leptokurtic .048 .051 .056 .041 .043 .046 .058 .056 .061

Skewed and .045 .045 .053 .046 .048 .052 .044 .040 .045

Leptokurtic

Note: Nominal .05.

1 3
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Table

Type 1 Error Retes for the Brown-Forsythe- (BF), Parametric ANOVA (F), and the
Rank Transform '40VA (RF)

Sample Size (n1/n2)

Variance 10/15 15110 20/20 17/23 23/17Ratio

Distribution o
2
:n

2
BF F RF BF F RF BF F RF BF F RF BF F RF1 2

Normal

1,1,1E0cm-tic

Skewed

1:1.5 .059 .049 .052 .050 .069 .066 .044 .045 .C42 .047 .038 .050 .046 .051 .052
1:2.0 .05 .041 .055 .055 .069 .066 .054 .057 .066 .057 .044 .042 .037 .045 .046
1:2.5 .056 .040 .043 .048 .067 .G68 .049 .049 .056 .046 .636 .047 .053 .068 .069
1:3.0 .055 .034 .045 .053 .089 .079 .050 .052 .061 .044 .037 .045 .042. .060 .056
1:3.5 .049 .029 .037 .055 .085 .075 .046 .046 .049 .051 .034 .040 .063 .078 .074
1:4.0 .044 .010 .041 .043 .084 .081 .067 .071 .000 .047 .034 .047 .043 .060 .r67

1:1.5 .043 .040 .047 .U40 .063 .068 .043 .043 .043 .044 .041 .048 .048 .056 .055
1:2.0 .040 .028 .034 .050 .061 .066 .048 .048 .054 .045 .040 .044 .048 .056 .060
1:2.5 .039 .024 .034 .060 .079 .078 .053 .055 .058 .053 .039 .047 .058 .073 .067
1:3.0 .058 .040 .059 .052 .076 .075 .059 .059 .062 .055 .038 .046 .045 .066 .072
1:3.5 .045 .027 .040 .052 .077 .078 .049 .051 .061 .056 .041 .058 .049 .081 .074
1:4.0 .055 .035 .045 .059 .087 .094 .052 .053 .063 .050 .033 .051 .G53 .078 .077

1:1.5 .038 .039 .052 .060 .059 .069 .057 .057 .057 .048 .045 .055 .053 .060 .071
1:2.0 .057 .045 .054 .054 .078 .090 .041 .041 .056 .055 .043 .060 .051 .057 .075
1:2.5 .054 .049 .071 .065 .979 .089 .046 .047 .073 .057 .047 .072 .053 .072 .093
1:I.0 .051 .035 .052 .057 .089 .088 .048 .049 .080 .047 .036 .065 .053 .070 .081
1:35 .049 .035 .064 .048 .075 .098 .049 .050 .079 .063 .047 .086 .041 .068 .097
1:4.0 .045 .027 .053 .054 .088 ..109 .053 .056 .079 .057 .040 .081 .059 077 .110

1 4



Leptokurtlk: 1:1.5 .034 .027 .018 .049 .068. .061 .052 .052 .049 .053 .047 .054 .045 .057 .049
1:2.0 .053 .042 .050 .036 .053 .045 .043 .045 .053 .047 .035 .050 .053 .067 .062
12.5 .046 .028 .043 .019 .070 .063 .051 .051 .048 .064 .047 .053 .049 .065 .053
1:3.0 .046 .028 .038 .041 .073 .052 .050 .051 .057 .049 .040 .054 .050 .072 .069
1:3.5 .036 .025 .037 .051 .088 .077 .04S .047 .048 .044 .029 .051 .061 .086 .071
1:4.0 .040 .022 .048 .041 .080 .073 .037 .039 .042 .064 .039 .055 .051 .082 .079

Skewed and 1:1.5 .039 .040 .067 .068 .070 .103 .058 .059 .108 .053 .047 .089 .046 .055 .097
leptokurtie 1:2.0 .046 .048 .095 .056 .062 .120 .043 .047 .119 .056 .052 .145 .055 .061 .149

1:2.5 .050 .049 .116 .067 .077 .147 .668 .069 .160 .039 .036 .137 .068 .073 .182
1:3.0 .045 .043 .118 .071 .035 .150 .060 .060 .190 .042 .035 .155 .071 .079 .188
1:3.5 .045 .939 .110 .077 .096 .170 .058 .061 .192 .045 .038 .203 .077 .095 .209
1:4.0 .056 .049 .149 .076 100 .175 .059 .062 .229 .066 .047 .192 .068 .089 .221

Note: Umalnal n .05

15
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variance the rank transform had acceptable Type I
error rates while the ANOVA F-ratio underestimated the
nominal significance level. With equal sample sizes,
both the ANOVA F and the rank transform were not
seriously affected by variance inequality. The
Brown-Forsythe procedure provided appropriate Type I
error rates for all degrees of variance inequality and
sample size combinations.
With symmetric, non-normal distributions the

observed Type I error rates were similar to those
obtained under' the normal populations. The rank
transform ANOVA had Type I error rates which were
affected to a lesser degree than the parametric ANOVA
F-ratio. Error rates within the acceptable range were
obtained for the rank transform approach when sample
sizes were equal and when the larger sample size had
greater variance. When the sample with fewer
observations had greater variance, the observed Type I
error rate exceeded the nominal significance level by
more than two standard errors. When samples were
selected from skewed ppulations, the rank transform
approach had observed Type I error rates
overestimating the nowlnal significance level for all
sample size combinations except when samples of
(10,15) were selected. Under the latter condition,
appropriate Type I error rates were obtained. The
Type I error rates for the ANOVA F-ratio were as
expected and were similar to those obtained under
normal distributions. With the skewed and leptokurtic
distribution, the rank transform became quite liberal,
even for the condition with sample sf.zes of (10,15).
Again Type I error rates for the parametric F were
similar to those obtained with the normal
distribution. The Brown-Forsythe procedure
overestimated the nominal significance level when the
samples distribution was both skewed and leptokurtic
and the larger variance was matched with the samples
having fewer observations. When larger samples were
matched with lower variance, appropriate Type I error
rates were obtained. These results were consistent
with those reported by Clinch and Keselman (1982) in
their analysis of Welch's procedure.
In summarizing these results, the observed Type I

error rates for the rank transform was affected to a
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lesser degree than the parameeric ANOVA F-ratio when
the samples distributions were symmetric. Thid
conclusion is consistent with that predicted by
Wetherill (1960) and previously demonstrated for the
:ormal distribution by Dauphin (1983). With sLewed
distributions however, the observed Type I error rate
overesttnated the nominal significance level. The
effect of variance inequality on the statistical rower
of the rank transform ANOVA when the sam'led
distribution was symmetric is presented in the next
section.

Statistical Power

The proportion of hypotheses rejected when the
populations differed by a small, medium, or large
effect size (.2, .5, or.8 pooled standard deviation
units respectively) are reported in Tables 4 and 5 for
ths symmetric distributions studied when samples wete
(20,20) and (17,23) respectively. With equal sample
sizes the Brown-Forsythe and parametric ANOVA provided
comparable power estimates for all three symmetric
distributions. When sample sizes were unequal the
Brown-Forsythe procedure provided a more sensitive
test for the difference in population means for all
three distributions. These results were expected
since 'under the conditions studied with unequal sample
sizes, the F-ratio leads to a conservative test.

Differences between power estimates for the rank
transform ANOVA and those provided by the
Brown-Forsythe and the parametric ANOVA procedures
were similar when sample sizes were equal or unequal.
For the normal and platykurtic distributions, the rank
transform ANOVA provided power estimates slightly
lower than those of the other two procedures. When
the sampled distribution was leptokurtic, however, the
rank transform procedure provided a more sensitive
test for the difference in population means than
either the Brown-Forsythe or the parametric ANOVA.

Conclusions

The results of the study indicate that the rank
transformation approach to analysis of variance can
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Table 4

Proportion of Hypotheses Rejected for the
Brown-Forsythe (BF), Parametric ANOVA (F) and the Rank
Transform ANOVA (RF)

Variance
Ratio

Distribution

Normal Platykurtic Leptaurtic

Zffect
Size

2
:

2
BF F RFal ac

Small 1:1.0 .098 .098 .090
1:1.5 .096 .099 .103
1:2.0 .095 .099 .096
1:2.5 .087 .092 .089
1:3.0 .101 .102 .109
1:3.5 .091 .092 .099
1:4.0 .094 .084 .090

hediun 1:1.0 .377 .378 .342
1:1.5 .341 .342 .319
1:2.0 .335 .344 .324
1.:2.5 .335 .338 .330
1:3.0 .357 .363 .351
1:3.5 .318 .326 .312
1:4.0 .364 .369 .349

Large 1:1.0 .718 .718 .678
1:1.5 .696 .697 .662
1:2.0 .678 .682 .644
1:2.5 .696 .702 .656
1:3.0 .682 .690 .637
1:3.5 .683 .689 .661
1:4.0 .666 .673 .641

BF F RF Sf F RF

.100 .101 .089 .100 .100 .115

.095 .096 .089 .065 .067 .091

.084 .086 .078 .099 .100 .106

.109 .110 .097 .094 .097 .096

.096 .099 .088 .107 .110 .131

.102 .104 .095 .095 .097 .118

.097 .101 .084 .110 .115 .109

.304 .304 .265 .376 .378 .417

.328 .329 .287 .348 .351 .388
.324 325 .275 .364 .364 .410
.326 .330 .269 .336 .339 .408
.345 .348 .281 .334 .344 .405
.298 .302 .236 .370 .373 .443
.341 .348 .273 .343 .352 .441

.699 .700 .640 .697 .701 .766
.705 .707 .623 .725 .728 .806
.689 .694 .611 .719 .724 .798
.668 .676 .554 .696 .703 .776
.671 .678 .567 .697 .703 .786
.655 .663 .537 .706 .721 .800
.689 .694 .553 .689 .697 .779

Note: 112 n2 20
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Table 5

Proportion of Hypotheses Rejected for the

Brown-Forsythe (BF), Parametric ANOVA F, and the Rank
Transform ANOVA (RF)

Effect
Size

Variance
Ratio Normal

2 2
C 1:02 BF F RF

Small 1:1.0 .097 .095 .090

1:1.5 .115 .108 .110
1:2.0 .104 .089 .083

1:2.5 .095 .070 .086

1:3.0 .089 .067 .083

1:3.5 .102 .074 .088

1:4.0 .101 .085 .091

Medimm 1:1.0 .350 .342 .327

1:1.5 .331 .314 .304

1:2.0 .384 .355 .339

1:2.5 .365 .321 .326

1:3.0 .377 '.324 .348

1:3.5 .383 .324 .349
1:4.0 .366 .295 .309

Large 1:1.0 .666 .672 .625

1:1.5 .707 .680 .662

1:2.0 .742 .700 .699

1:2.5 .738 .688 .687

1:3.0 .754 .679 .689

1:3.5 .743 .688 .675

1:4.0 .772 .703 .712

Note: n
1

17
' 2
n 23

Distribution

Platvkurtic Leptokurcic

BF

.082

.087

.093

.080

,102

.104

.101

.304

.356

.358

.365

.350

.356

.371

.693

.691

.711

.742

.737

.736

.741

F RF SF F RF

.082 .082 .078 .078 .794
.078 .077 .080 .072 .097

.076 .086 .098 .0E2 .120

.064 .071 .100 .077 .117

.084 .091 .125 .099 .143

.079 .089 .119 .091 .112

.073 .075 .112 .088 .113

.310 .281 .369 .372 .420

.329 .296 .382 .367 .429

.314 .278 .365 .247 .417

.327 .284 .389 .344 .437

.299 .252 .389 .337 .448

.301 .270 .390 .345 .448

.294 .260 .411 .346 .448

.698 .637 .671 .674 .762

.669 .617 .731 .718 .792

.683 .620 .753 .712 .805

.698 .610 .753 .715 .828

.685 .610 .772 .714 .819

.679 .598 .740 .700 .790

.688 .592 .761 .709 .834

19
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provide a solution to the BehrensFisher problem, but
this solution is appropriate only for a limited set of
conditions. In particular the rank transform ANOVA
may be recommended when sample frequencies are
positively related to group variances and the form of
the population distribution is leptokurtic. Under
that condition the actual Type I error rate does not
overestimate the nominal significance level and the
rank transform provides a slight power advantage over
the BrownForsythe solution. This result was
interesting in that the power advantage for the rank
transform procedure was obtained even though the
actual T-,-pe I error rate underestimated slightly the
nominal significance level. These results indicate
that Type I error rate alone should not be used to
evaluate or compare .statistical analysis strategies.
On the other hand, consideration of both statistical
power and actual Type I error rates do provide minimum
criteria in judging the usefulness of analysis
alternatives.

For other symmetric distributions the rank transform
procedure did not provide any statistical advantage
compared to the BrownForsythe procedure. With skewed
population distributions, however, the rank transform
approach overestimated the nominal significance level
even when the sample frequencies were equal. This
finding may be viewed as an important limitation of
the rank transform strategy.

As a general solution to the group variance
inequality problem, the results of this study do not
provide sufficient evidence to recommend any single
analysis approach. Before computing hypothesis tests,
researchers should first obtain descriptive summary
statistics to determine the sample distribution
characteristics and to use this information to guide
their choice of analysis procedures. For most
situations where the population variances differ, the
BrownForsythe procedure can be used to compare means.
This procedure has been shown in the present study, as
well as previous investigations, to be generally
robust to variance inequality and to provide
statistical power comparable to or greater than
parametric analysis of variance. There is some
evidence however which indicates that when the sampled

78
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distributions are both skewed and leptokurtic, the
Brown-Forsythe procedure can overestimate the nominal
significance level if sample frequencies and group
variances are negatively related.
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